≥ 92% of participants will be able to identify risk factors for pressure ulcer development, describe pressure ulcer staging, and discuss evidence-informed pressure ulcer prevention and management strategies.
CEUFast, Inc. is accredited as a provider of nursing continuing professional development by the American Nurses Credentialing Center's Commission on Accreditation. ANCC Provider number #P0274.
CEUFast, Inc. is an AOTA Provider of professional development, Course approval ID#02147. This distant learning-independent format is offered at 0.2 CEUs Intermediate, Categories: Foundational Knowledge. AOTA does not endorse specific course content, products, or clinical procedures. AOTA provider number 9757.
≥ 92% of participants will be able to identify risk factors for pressure ulcer development, describe pressure ulcer staging, and discuss evidence-informed pressure ulcer prevention and management strategies.
After completing this continuing education course, the participant will be able to meet the following objectives:
Pressure ulcers have been known as "bedsores" for hundreds of years. Historically, the term decubitus ulcer or decubiti has also been used to describe these wounds related to pressure or immobility. The term "pressure ulcer" was replaced by "pressure injury" in the 2016 Pressure Injury Staging System by the National Pressure Injury Advisory Panel (NPIAP) and Pan Pacific Pressure Injury Alliance (PPPIA).
Avoidable facility-acquired PUs are recognized internationally as a quality-of-care indicator for healthcare organizations (Office of Disease Prevention and Health Promotion [ODPHP], 2022; Agency for Healthcare Research and Quality [AHRQ], 2023; Centers for Medicare and Medicaid [CMS], 2022). Many healthcare organizations have adopted the new "pressure injury" terminology as well as the updated staging terminology (stages 1-4, unstageable, deep tissue pressure injury [DTPI], medical device-related pressure injury, and mucosal membrane pressure injury). The degree of tissue damage in PUs is typically classified by the NPIAP staging system (JCAHO, 2022). CMS changed its terminology to "pressure ulcers/injuries" for skilled nursing facility (SNF) quality reporting in 2018 (CMS, 2019). However, coding systems such as the International Statistical Classification of Diseases and Related Health Problems – version 10 (ICD-10) continue to use the pressure ulcer term (L89 codes). For this educational course, we will use the term pressure ulcer (PU) without disrespecting the NPIAP.
PUs can have devastating financial implications. Whittington & Briones estimated annual medical costs in the United States associated with treating PUs exceed 5 billion dollars annually. Fogerty et al. (2008) estimated this cost to be higher at $10,845 per patient, exceeding 18.5 billion dollars annually. They also concluded that treating stage 3 and stage 4 hospital-acquired PUs accounts for 58% of national costs (Padula & Delarmente, 2019). Furthermore, studies suggest preventing a PU costs less than treating it (Demarré et al., 2015). Individuals with PUs have higher mortality rates and up to five-fold increased hospital length of stay. Medicare estimated each PU added $43,180 in costs to a hospital stay, while AHRQ estimated the potential cost of individual patient care related to PUs ranging from $20,900 to $151,700 per PU (AHRQ, 2017).
In 2020, AHRQ published Patient Safety Indicators with reported observed rates of hospital-acquired PUs per 1,000 admissions from 47 states in the United States (from hospital discharge data). The overall PU rate for the 2020 report was 0.65 per 1,000 admissions (0.52 per 1,000 admissions for females and 0.79 per 1,000 admissions for males). The overall PU rate for the 2022 report was 0.60 per 1,000 admissions (0.47 per 1,000 admissions for females and 0.73 per 1,000 admissions for males), indicating a slight decrease from the 2020 report to the 2022 report.
CMS reported PUs were present in 3.7 to 7.3% of residents in most long-term care facilities or nursing homes in the United States in 2014 (CMS, 2015). However, the numbers of actual PUs are under-reported. In a study examining the accuracy of nursing home reporting PU rates, the research team stated, "for primary pressure ulcers, 22% were not reported by the nursing homes to CMS; that percentage doubled to 45% when accounting for secondary pressure ulcers" and, "nursing homes substantially under-reported pressure ulcers between 2011 and 2017" (Chen et al., 2022). The 2014 CMS reported rates of PUs in long-term care facilities represent an estimated annual cost of over 3.3 billion dollars (CMS, 2015). More recent estimates of the cost of PUs in United States hospitals could exceed $26.8 billion annually (Padula & Delarmente, 2019). Furthermore, it is important to note a healthcare disparity related to the higher percentages of stage 4 PUs in African American nursing home residents. For example, 50.4% of stage 4 PUs were in African American residents vs. 40.8% in Caucasian residents in short-stay nursing homes. In long-stay nursing home residents, 54.2% of stage 4 PUs were in African American residents vs. 45.6% in Caucasian residents (Chen et al., 2022).
In a large 2018/2019 critical care study of 41,866 critical care patients drawn from a sample of 296,014 patients in United States acute care facilities, investigators found the overall prevalence of PUs in critical care patients was 14.3%, and the hospital-acquired PU prevalence was 5.85%. They compared these rates with 2015 rates; the overall prevalence in critical care patients in 2015 was 14.5%, and the hospital-acquired PU rate was 6.4%. The most common stage reported was DTPI at 33.6% (Cox et al., 2022). The three most common anatomical locations of the PUs in critical care patients were the Coccyx/Sacrum (33.2%), the buttocks (14.8%), and the heels (12.6%). The strongest risk factors for PUs in critical care patients included diabetes mellitus, mechanical ventilation, peripheral vascular disease, and receiving vasopressor agents.
In a national inpatient sample of over six million persons discharged from acute care facilities in the United States, 94,758 individuals had a discharge diagnosis of a PU (Fogerty et al., 2008). However, this number only accounts for patients with a PU diagnosis code documented at discharge. The real numbers of incident PUs (those that start in the facility) are difficult to estimate since studies report widely varied rates across healthcare settings. Most of these rates are prevalence rates (any PU present over a given time) and are under-reported (European Wound Management Association [EWMA], n.d.).
It is evident from the scientific literature that PUs are painful, prone to infection, reduce the quality of life, and create a worldwide economic dilemma (Maklebust, 2005). While healthcare and medical technology have improved in the United States during the past 20 years, facility-acquired PUs have not been eliminated (Rondinelli et al., 2018). Concurrent with this advancing technology, modern-day patients live longer and are typically hospitalized with higher acuity levels than patients hospitalized years ago. Healthcare organizations must continuously improve this important quality of care indicator (National Database of Nursing Quality Indicators [NDNQI], n.d.).
Historically, PUs have been described in medical literature since at least the 1500s, when Fabricius Hildanus first documented his hypotheses of the causes and characteristics of bedsores. He highlighted the role of "internal supernatural" and "external natural" factors that interrupt the supply of blood and nutrients to tissue as causes of bedsores. French surgeon de la Motte identified mechanical pressure and incontinence as key factors in developing PUs in 1722 (Defloor, 1999). Major risk factors for PU development include increased age, impaired mobility, decreased physical activity, poor nutrition, urinary or fecal incontinence, and sensory impairment. Other studies have identified additional risk factors, including smoking status, diabetes mellitus (DM), coronary artery disease (CAD), intensive care unit (ICU) stay greater than three days, ventilator dependency, pneumonia, sepsis, obesity, surgery, female gender, vasopressor agents, and peripheral vascular disease (PVD) (Cowan et al., 2012; Tschannen & Anderson, 2020; Cox et al., 2022).
Most PUs are considered to be avoidable and preventable. An "avoidable" PU means that the patient developed a PU and the facility or healthcare providers did not perform (or document) one or more of the following: evaluate the patient's/resident's clinical condition and PU risk factors; define and implement interventions that are consistent with resident needs, resident goals and recognized standards of practice; monitor and evaluate the impact of the interventions, or revise the interventions as appropriate. There may be a few instances where PUs are unavoidable.
Etiology of Pressure Sores
The research published by Fogerty et al. (2008), Cowan et al. (2012), and many others have demonstrated how important adequate nutrition and hydration are to maintaining intact skin and facilitating wound healing. Individuals who are nutritionally compromised are at greater risk of a PU.
Chung et al. (2022) conducted a narrative synthesis evaluation of research studies published before December 2020 related to PU risk factors. The total combined sample represented 679,660 individuals. They reported, "in low to moderate risk of bias studies, non-blanchable erythema reliably predicted pressure injury stage 2." Other possible risk factors for the development of a PU identified in this study include the following:
Cowan et al. (2012) conducted a retrospective analysis in a Veteran population to identify the strongest PU predictive model, demonstrating that four medical factors (malnutrition, surgery, pneumonia, and candidiasis) were more predictive of a PU. Identifying factors affecting the development of PUs is imperative in the present-day population to select patients for effective prevention interventions. Furthermore, evaluation of the efficacy of existing preventive interventions must be ongoing, and new innovative interventions must be explored to impact PU incidence and prevalence significantly.
Identifying a risk factor is necessary to potentially intervene and lower the associated risk. Identifying the strongest modifiable PU risk factors is important to provide evidence-based interventions and thereby lower the likelihood of someone developing a PU or halting the progression of the PU. PU risk assessment tools provide a tangible way to quantify potential risk so that interventions may be reserved for those at the highest risk and avoid unnecessary interventions and higher financial expenditures on those who may not need them. However, risk assessment tools do not include all risk factors present in an individual, and clinicians are encouraged to use clinical judgment to appropriately account for any additional PU risk factor not addressed by the risk assessment tool their facility is using (Moore & Patton, 2019).
One criticism of existing PU risk assessment tools is that neither risk factors nor the weights attributed to them have been identified using adequate statistical techniques. Risk factors are those factors or conditions that are noted to be most strongly associated with the outcome of interest. To provide evidence-based measures for preventing PUs, an effective means of identifying those at the highest risk is imperative. Another criticism of PU risk assessment tools is the lack of clear evidence that risk assessment tools significantly impact clinical outcomes such as incidence rates. Other criticisms include the subjective nature of some of the assessments, the lack of tools for specific settings such as the perioperative environment, and the fact that no one assessment tool could account for every risk factor (Moore & Patton, 2019). Current risk assessment tools may require further development, improved statistical evaluation, and possible modification to remain applicable to present-day populations.
Thomas posits an explanation for an unchanging incidence of PUs as "a failure of known effective prevention treatment to be applied, or the failure of prevention strategies to be effective despite being applied" (p.298). Effective preventive measures may not be applied if individuals are not appropriately identified as at risk. Risk screening tools are useless if they do not apply to the population being screened, are used inconsistently, or are scored incorrectly. Furthermore, Chung et al. (2022) notes the evidence supports close communication among healthcare givers concerning risk factors to optimize prevention and treatment efficacy.
The PU risk assessment tools most frequently utilized worldwide are the Norton Scale (published in 1962) and the Braden Scale (published in 1987) or modified versions of these.
They developed a rating 'scale' (when rating scales were uncommon) with five elements with weighted descending values for each element from 4 to 1. The elements or factors in their tool were listed as column headings for general physical condition (including overall nutritional state), mental condition, mobility, activity, and incontinence. Norton reports the tool was scored '4' for a normal or good function in each factor and '1' for very poor or bad function, with a total possible high score of 20 (patient in good overall condition) and a low score of 5 (patient in poor overall condition). A descending scale was selected because it correlated with a decline in the patient's condition.
The Braden Scale is today's most widely used PU risk assessment tool. The theoretical framework is based on a physiological model depicting factors contributing to the development of PUs. It includes factors affecting the intensity and duration of pressure (decreased mobility, decreased activity, and decreased sensory perception), which combine with intrinsic factors (age, nutrition, vascular perfusion) and extrinsic factors (increased moisture, increased friction, and increased shear forces) that affect tissue tolerance. The Braden Scale is publicized as the most extensively tested and studied of the assessment tools. The Braden Scale has a potential score ranging from 6 to 23 derived from the total scores of its six subscales (sensory perception, mobility, activity level, moisture/incontinence, nutrition, and friction/shear).
Nurses tasked with conducting daily PU risk assessments should take them very seriously and score them accurately, taking into account any change in the patient's condition and risk not assessed by the specific tool being used. It is always better to overestimate risk than to underestimate risk! And sometimes, this means assigning a lower score if lower scores indicate higher risk on the risk screening tool you are using (such as the Braden Tool). If the person's sub-score falls between numbers, always select the lower number to try and capture any possible risk. For instance, if the patient's nutritional sub-score falls between a "2" and "3" on the Braden Tool, always mark it a "2". |
Diagnosing PUs depends on assessing possible pressure, shear, and moisture-related etiological factors and the location of the tissue damage. The first question in your mental wound assessment "checklist" should be: "Is it over a bony prominence?" While PUs may develop over any bony prominence on the body, the sacrum, coccyx, buttocks, and heels of the feet are the most prevalent sites. Other common locations may include greater trochanters, ischial tuberosities, ankles, knees, elbows, scapulas, shoulders, and the occiput (IQWIG, 2018). In addition, a pressure-related injury may also be related to devices such as oxygen tubing, cervical collars, endotracheal tubes, oxygen saturation monitor probes, drain tubes, foley catheters, etc. Device-related PUs may be observed over the ears, around the urethral opening of the genitals, or in other soft tissue locations not associated with a bony prominence (NICE, 2015).
Furthermore, this type of device-related injury may cause full-thickness tissue damage, which is difficult to stage because, as in the case of the ears, there is no subcutaneous tissue evident. A very shallow wound on the ears or nose may result in the exposure of cartilage (full-thickness wound) without the involvement of muscle, tendon, or bone. Again, it is important to note that while the onset of PU is associated with unrelieved pressure, it can also be caused by a combination of pressure, friction, and shearing forces. Evaluating these potential forces (head of the bed raised for long periods, patient sliding down in the bed, chair transfers, improper overhead sling positioning, etc.) is imperative when assessing your patient's skin integrity risks.
Stages of Pressure Ulcers
Stage 2 Pressure Injury: Partial-thickness skin loss with exposed dermis. The wound bed is viable, pink or red, moist, and may also present as an intact or ruptured serum-filled blister. Adipose (fat) is not visible, and deeper tissues are not visible. Granulation tissue, slough, and eschar are not present. These injuries commonly result from adverse microclimate and shear in the skin over the pelvis and shear in the heel. This stage should not be used to describe moisture-associated skin damage (MASD), including incontinence-associated dermatitis (IAD), intertriginous dermatitis (ITD), medical adhesive-related skin injury (MARSI), or traumatic wounds (skin tears, burns, abrasions).
Unstageable Pressure Injury: Obscured full-thickness skin and tissue loss.
Deep Tissue Pressure Injury: Persistent non-blanchable deep red, maroon, or purple discoloration. Intact or non-intact skin with localized area of persistent non-blanchable deep red, maroon, purple discoloration or epidermal separation revealing a dark wound bed or blood-filled blister. Pain and temperature changes often precede skin color changes. Discoloration may appear differently in darkly pigmented skin. This injury results from intense and prolonged pressure and shear forces at the bone-muscle interface. The wound may evolve rapidly to reveal the actual extent of tissue injury or may resolve without tissue loss. If necrotic tissue, subcutaneous tissue, granulation tissue, fascia, muscle, or other underlying structures are visible, this indicates a full-thickness pressure injury (unstageable, stage 3 or stage 4).
Additional pressure injury definitions include the following:
Medical Device-Related Pressure Injury: This describes an etiology.
Mucosal Membrane Pressure Injury: Mucosal membrane pressure injury is found on mucous membranes with a history of a medical device in use at the location of the injury. Due to the anatomy of the tissue, these ulcers cannot be staged.
It is important to note PUs should never be "back-staged," meaning once a wound is identified as a stage 3 pressure ulcer/injury, it is never referred to as a stage 1 or 2. Rather, the stage 3 pressure ulcer/injury, which is healing would be referred to as a "healing stage 3 pressure ulcer/injury." In addition, only pressure ulcers/injuries are "staged."
The approach to managing PUs should always focus on PREVENTION. If the patient develops pressure-related injury (despite preventive measures), then evidence-based practice related to wound healing should be administered but always with PREVENTION in the treatment plan. Healthcare providers should also prevent the PU from deteriorating or worsening to a deeper stage. Evidence suggests that offloading and pressure reduction/redistribution should be a primary goal of treating PUs and eliminating shearing and friction forces. Addressing other key contributing or risk factors is also critical. Knowing what intrinsic and extrinsic factors contribute to skin breakdown is important. Intrinsic factors such as age, immune function, nutrition, and disease states (comorbid conditions) should be considered.
Managing excessive moisture (incontinence, sweat, spilled liquids) on the skin surface of patients at risk for PUs is another critical preventive and management goal (Saindon & Berlowitz, 2020). Managing incontinence includes establishing a bowel and bladder program, cleansing the skin after soiling with pH-balanced cleansers, and using incontinence skin barriers (creams, ointments, etc.) to protect and maintain intact skin. Consider a pouching system or collection device to protect from effluence if fecal incontinence is an issue. Indwelling catheters may be indicated for short-term use with severe incontinence-related dermatitis and difficulty managing urinary incontinence. In addition, limit the use of diapers, but if briefs, diapers, or underpads are used, make sure they are the type that wicks moisture from the skin. In addition, temperature plays an important role concerning moisture. Saindon and Berlowitz (2020) systematically reviewed the PU literature. One of their research study conclusions reported that "higher temperatures at the (skin) surface are transferred to deeper tissues, resulting in greater susceptibility to injury. Too much or too little moisture increases the coefficient of friction, with resulting increases in shear deformation of subcutaneous tissues" (and thus, leading to a potential PU).
Open PUs are wounds. Many become chronic wounds, and stage 3-4 PUs have been associated with a higher complication rate, especially infection and sepsis, and a higher mortality rate than other chronic wounds (Saindon & Berlowitz, 2020). We will review some helpful mnemonics to guide wound bed preparation and management of full-thickness open wounds. The first mnemonic is T-I-M-E. There are pivotal articles describing T-I-M-E to guide clinicians in managing full-thickness wounds. (Leaper et al., 2012; Schultz et al., 2003)
Undermining (an underground cave, "lip," or shelf under the edge of a wound) is often caused by shearing forces (such as when a person slides down in bed or someone slides harshly on a transfer board). Eliminating these forces is the only way to prevent/reduce this undermining in PUs, particularly a sacral, coccyx, and ischial PU. |
The following mnemonic illustrates similar principles for topical wound therapy:
Another published mnemonic, "DIDN'T HEAL," provides a useful way to help remember factors that adversely affect wound healing (Daley, 2020):
Political issues affecting prevention and treatment may include scenarios like the one in Iran, where pressure-reducing equipment is scarce, or situations where a lack of healthcare resources prevents the global implementation of even basic preventative measures. Government-sponsored or subsidized medical care, private insurance, homelessness, drug addiction, war, economic crisis, and limited transportation or food sources are a few huge issues affecting healthcare today. In America, Medicare and Medicaid services come to mind when considering economic, social, and political implications on research findings regarding PU risk. To highlight this point, a roundtable discussion of the International Expert Wound Care Advisory Panel highlights one PU-specific ramification of the Deficit Reduction Act of 2005. The expert panel detailed subsequent changes in the CMS financial reimbursement amounts for long-term and acute care settings such as nursing homes and hospitals. Beginning in October 2008, CMS no longer reimbursed higher rates for patients that develop stage 3 or 4 PUs (full-thickness tissue loss) after admission, representing a potentially substantial economic loss to healthcare facilities. The act was thought to provide additional motivation to acute and long-term care facilities to evaluate and improve their documentation and prevention programs. However, there is a lack of research supporting the reduction in coverage of any improvements in PU prevention or rate reduction. This discussion is significant as it stresses the urgency of a consensus among healthcare providers, particularly the wound care community, in providing effective quality research and evidence-based (and innovative) outcome data related to interventions.
The ethical dilemma for PU research arises when you want to do an RCT where the dependent variable of interest is a poor medical outcome, like a stage III PU. It would not be ethical to divide two elderly groups into experimental and control groups, apply some intervention to one group, and withhold preventive interventions to high-risk patients in another group. At the same time, you observed both groups to see who developed a stage 3 PU. Ethically, researchers should desire to prevent harm (PUs) in all subjects, and if something were to cause skin or tissue injury, you would want to intervene immediately. To merely record how bad things got in one group would go against biomedical ethical principles of "not causing harm." However, RCTs can be conducted that investigate potentially positive outcomes. Several RCTs have been reported involving patients deemed at risk for PUs that introduce a theoretically preventative intervention (such as a new support surface) versus standard care (existing mattress) to see which is more effective at preventing PU development (comparative effectiveness studies).
In particular, concerning PU risk prediction, data collected from research studies on populations twenty years ago poses a problem for application to the current population. Many of the prevention guidelines available today are based on those risk factors identified over twenty years ago, and these may not carry the same relevance today.
Unfortunately, in the US, AHRQ decided to stop hosting the National Guideline Clearinghouse website in 2018. However, there continues to be national and international guidelines available to healthcare providers on other websites, such as those listed below:
|
Health information technology (HIT) and patient safety approaches have changed dramatically over the past two decades. These advances will likely meet the increased needs of patients admitted to acute care facilities. Vincent et al. (2006) describe medical technology and clinical procedure advances, as well as process of care (organizational/policy) changes within the emergency medicine and intensive care unit (ICU) arenas over the past 25 years. In addition, more patients are having procedures done on an outpatient basis, so fewer patients with "minor" conditions are being admitted to the hospital. These changes will likely alter acuity levels, numbers of patient transfers within facilities, and length of stays for patients admitted to hospitals. Essentially, these factors are apt to change the "face" of the inpatient population and impact the characteristics of those at risk of a PU. The face of healthcare as we know it is also changing, with technological advances only dreamed about ten years ago. The World Economic Forum describes several advancements, such as virtual reality, artificial intelligence, "wearables," 5G-powered remote visits, etc. It is possible that many of these technologies could be applied to PU prevention, diagnosis, and management in the near future.
Prevention is paramount!
Address healing impediments, especially nutrition, moisture, temperature, friction, and shear.
Use appropriate mnemonics to help guide wound bed preparation and wound healing approaches.
As stated before, many changes have occurred in health care over the past 20 years, especially with nursing care delivery, hospital organizational frameworks, quality improvement, financial coverages, not to mention technology (including electronic records), and perhaps the overall face of our present-day patient population. Nevertheless, despite multiple prevention programs implemented nationwide, the incidence and prevalence (and the number of deaths attributed to PUs annually by the CDC) have not changed significantly in many facilities. Researchers need to determine why and develop innovative approaches to solve this dilemma. The effectiveness of prevention and treatment interventions must be determined. Guidelines must be based on current, high-quality scientific evidence, and impediments to implementation must be addressed. There are significant gaps in the scientific literature regarding PU risk assessment in different settings, particularly present-day populations, and how PU risk assessment may impact patient outcomes (Warner-Maron, 2015). New conceptual models of PU development, risk assessment, and effective prevention interventions may need to be developed.
What does the future hold? We already have thermographic scanning for temperature assessment, infrared devices, sub-epidermal moisture detection devices, etc. It will be important to continue to evaluate the efficacy of these devices and technologies, especially regarding future prevention approaches.
Patient
A 76-year-old African American male, Mr. Smith, presented to the emergency room at 4 pm for a fractured right hip after falling at home. No other complaints were noted. History includes type II diabetes (well-controlled with oral medication and diet), hypertension (no current medication, ran out three months ago), height 5'10", weight 150 lbs (recent weight loss of 25 lbs. over the past three months after wife recently died). Mr. Smith lives alone but has a son who lives two hours away and visits every two weeks. He has been using a walker to ambulate for the past two years since he is "not too steady" on his feet sometimes. Mr. Smith reports he sometimes dribbles urine after urinating but denies any incontinence of urine or stool. The current pain level is eight out of ten. His blood pressure is 170/98. His HbA1c level is 7.2, and his serum glucose is 125.
Risk Assessment
The Braden Scale was used by the admission nurse. Here is how she scored the patient: Sensory Perception: 4 "no impairment"; Moisture: 4 "rarely moist"; Activity: 3 "walks occasionally"; Mobility: 3 "slightly limited"; Nutrition: 3 "Adequate"; Friction & Shear: 3 "No apparent problem" – Total score: 20 (not at risk); Visual skin assessment head-to-toe reveals no redness over any boney prominence. However, a skin tear was noted on the left forearm from a fall at home.
Prevention Intervention Strategies
The patient is placed on a foam mattress (standard for the medical-surgical unit Mr. Smith was admitted to) while awaiting hip surgery. Mr. Smith cannot have anything by mouth (NPO) after midnight, and no nutrition consult has been placed yet. He is on bed rest, and an opioid was ordered for pain relief before surgery. Mr. Smith is using a urinal for voiding during the night. The patient does not want to be turned to the side during the night due to pain.
Initial Clinical Outcomes
Mr. Smith goes to surgery without additional skin assessment, and no one documents any skin warmth at the sacral area or right heel. Perianal moisture is present but not documented by transfer personnel. Mr. Smith is prepped for surgery, and the nurse conducting the perioperative skin assessment notes intact but slightly darker skin over the sacral area. The skin is also warmer to touch over the sacral area than the surrounding skin. The nurse also notes some right hip bruising (diffuse bruising over most of the right lateral hip and thigh – not particularly over trochanter boney prominence), in addition to some right heel bogginess and warmth, and the left forearm skin tear.
Staging
Perioperative nurse documents right hip bruising likely due to fracture injury, a stage 1 sacral PU, and stage 1 right heel PU. The left forearm skin tear is not staged because it is not a PU, and the right hip is not staged due to the nature of bruising consistent with fall injury and fracture.
Management Strategies
Perioperative staff implement specialty gel operating table padding and carefully apply foam padding to the non-operative extremities, head, etc. They also take care to float heels. In recovery, alternating pressure redistribution surface is used, small adjustments to the patient's position are made hourly to relieve pressure to the sacral area, and heels continue to be floated. Vital signs reveal high blood pressure after surgery (200/110) and elevated heart rate (110/min). Labs are unremarkable. The patient is transferred to surgical intensive care for observation. The beds have alternating pressure mattresses and beds with a "turn to assist" capability. When the patient awakes, he reports pain as four out of ten. Post-operative opioids are ordered for pain. The patient remains NPO. The perioperative staff points out all skin findings to the intensive care staff. When the patient was admitted to intensive care, the Braden risk assessment score was: Sensory Perception: 2 "very limited"; Moisture: 2 "often moist"; Activity: 1 "bedfast"; Mobility: 2 "very limited"; Nutrition: 1 "very poor"; Friction & Shear: 1 "problem" – Total score: 9 (severe risk). A nutrition consult and a wound consult by a wound specialist are ordered.
Outcomes
The patient stabilizes within one day and is transferred to a regular medical-surgical floor (on an alternating pressure specialty mattress). The staff now documents the sacral PU as stage 2 superficial open blister but no purple discoloration, and the right heel is now a deep purple color, intact, and still boggy (documented by staff as stage 1). The interdisciplinary team discusses the PU management plan and steps to initiate a care plan to prevent the progression of the existing PU and any new PU. Physical therapy initiates a mobility and strengthening care plan, and the patient starts to ambulate with assistance. A regular turning schedule is implemented at least every two hours, and sips of fluid are offered with a turning schedule. A moisture barrier cream is ordered for the perineum, and the head of the bed is kept at 30 degrees or below (when in bed) except for meals and 30 minutes after meals. Pain that may be present with turning is addressed by medicating Mr. Smith 30 minutes before the turn as needed, and nutrition interventions have been initiated. The social worker and team discuss the best location to discharge the patient, the potential need for home assistance, and the safety assessment of the home environment. Mr. Smith is discharged 12 days after the resolution of the stage 2 sacral PU with no further evolution of the heel PU. Right hip bruising is resolved, and the left forearm skin tear is closed. Mr. Smith's vital signs, including his blood pressure, pulse, and labs, are all unremarkable at discharge.
Strengths of the Case
Perioperative skin assessment was thorough and accurately noted PUs over the sacral area and right heel. The healthcare staff correctly noted right hip bruising due to injury and not a PU (diffuse bruising over most right lateral hip and thigh – not particularly over trochanter boney prominence) and the left forearm skin tear (not a PU). Perioperative staff also implement prevention strategies during surgery (specialty gel operating table padding and careful foam padding to non-operative extremities, head, etc., and take care to float heels). Alternating pressure redistribution surface is appropriately used, with small adjustments to the patient's position regularly made to relieve pressure to the sacral area, and heels continue to be floated. ICU staff correctly score the risk assessment as" 9" (very high risk):
Total score: 9 (severe risk) was accurate at admission to intensive care.
Appropriate interventions based on the level of risk considered for a Braden Scale score of 9 include: Frequent turning; maximal remobilization (early mobility, PT/OT involvement if feasible and patient's condition allows); protect heels (float heels but take care to not cause increased focused pressure to Achilles tendon – if using pillows, use one lengthwise behind each leg at calf and with enough height that heels do not touch bed surface); manage moisture (may include moisture barrier creams, avoid drying the skin, bed pads that wick moisture away from body, address cause of moisture if possible, etc.), manage nutrition and hydration (nutrition consult, increase protein intake, supplement if needed, offer liquids with turn schedules if patient is able to take oral liquids), and friction and shear (maintain head of bed below 30 degrees when not eating if condition is stable, use trapeze when indicated, use lift sheet to move patient, protect elbows and heels during movement if exposed to friction); pressure relieving support surface; turning schedule (low air loss beds or mattress overlays do not substitute for turning schedules); use of foam wedges for 30 degree lateral positioning (if medical condition allows for this); and supplementing turn schedules with small shifts in position more frequently.
The actions of the staff in the case scenario addressed some of these. Physical therapists initiated a mobility and strengthening plan of care, a regular turning schedule was implemented at least every two hours, and sips of fluid were offered with a turning schedule. A moisture barrier cream was ordered for the perineum, and the head of the bed was kept at 30 degrees or below (when in bed) except for meals and 30 minutes after meals. Pain that may be present with turning was addressed, and nutrition interventions have been initiated. Nutrition and wound consults were placed. An interdisciplinary team and social worker were involved with discharge planning, and a home safety assessment was ordered (to prevent further falls). Self-care needs at home were also evaluated/addressed.
Weaknesses of the Case
The initial Braden score obtained on admission to the hospital facility did not account for the real measure of PU risk or Mr. Smith's age as a risk factor (not accounted for by the Braden tool). The admission assessment documented:
However, this would have been scored more accurately if these sub-scores were marked in this way:
The total admission score should have been between 10 and 12 (both are high-risk scores). Appropriate prevention interventions might have been initiated earlier if this level of risk had been communicated, and the PU he developed may have been avoided.
Additionally, there was room for improvement for the medical-surgical staff related to PU staging of the right heel, which was incorrectly staged as a stage 1 but was a deep purple color, intact, and still boggy (should have been staged as a deep tissue injury). Quicker implementation of powered pressure redistribution support surfaces and better attention to offloading heels pre-operatively may have helped prevent the PUs that developed (AHRQ, 2023; NPIAP, n.d.).
CEUFast, Inc. is committed to furthering diversity, equity, and inclusion (DEI). While reflecting on this course content, CEUFast, Inc. would like you to consider your individual perspective and question your own biases. Remember, implicit bias is a form of bias that impacts our practice as healthcare professionals. Implicit bias occurs when we have automatic prejudices, judgments, and/or a general attitude towards a person or a group of people based on associated stereotypes we have formed over time. These automatic thoughts occur without our conscious knowledge and without our intentional desire to discriminate. The concern with implicit bias is that this can impact our actions and decisions with our workplace leadership, colleagues, and even our patients. While it is our universal goal to treat everyone equally, our implicit biases can influence our interactions, assessments, communication, prioritization, and decision-making concerning patients, which can ultimately adversely impact health outcomes. It is important to keep this in mind in order to intentionally work to self-identify our own risk areas where our implicit biases might influence our behaviors. Together, we can cease perpetuating stereotypes and remind each other to remain mindful to help avoid reacting according to biases that are contrary to our conscious beliefs and values.