≥92% of participants will learn the importance of using standard precautions and to update the healthcare professional on current treatment for occupational exposure to a bloodborne pathogen.
CEUFast, Inc. is accredited as a provider of nursing continuing professional development by the American Nurses Credentialing Center's Commission on Accreditation. ANCC Provider number #P0274.
≥92% of participants will learn the importance of using standard precautions and to update the healthcare professional on current treatment for occupational exposure to a bloodborne pathogen.
After completing this course, the learner will be able to:
Exposure to bloodborne pathogens, particularly hepatitis B (HBV), hepatitis C (HCV), and human immunodeficiency virus (HIV), is a constant risk for healthcare workers (Aljohan et al., 2021; CDC, 2019a; CDC, 2016a; Shenoy & Weber, 2021; Weber, 2020). Transmission of and infection with HBV, HCV, and HIV after an occupational exposure is very uncommon (CDC, 2016a). Still, needlestick and sharps injuries and splashes with blood and body fluids, situations that put healthcare workers at risk, are not (Mengitsu et al., 2021). This module will discuss the epidemiology and transmission of HBV, HCV, and HIV in healthcare settings and the prevention and treatment of exposure to these pathogens.
The term occupational exposure is frequently used in this module, and it refers to exposure in a healthcare setting.
A nurse working in an emergency room (ER) is caring for a patient who has almost certainly taken an overdose of fentanyl. The patient has been treated many times before for fentanyl overdoses, and today he was found at home and had the characteristic signs and symptoms of opioid poisoning. The emergency medical services personnel at the scene determined that at the time, the patient could be safely managed and transported with the use of supplemental oxygen alone.
The nurse begins to insert an IV catheter into the patient's arm. However, before the nurse can complete the procedure, the patient wakes up, he forcefully pulls back his arm, and the IV catheter, which is visibly covered with blood, slips out of the patient's arm, and the tip punctures the nurse's finger. The nurse places a pressure dressing on the catheter insertion site. He removes his gloves, washes the puncture wound with soap and water, and registers as a patient in the ER. The nurse is 29 years old, and he does not have any acute or chronic medical problems.
The nurse suffered a penetrating needlestick injury, the needle was contaminated with blood, and the source has a high risk of being infected with a bloodborne pathogen. This incident is an exposure that puts the employee at risk for infection with a bloodborne pathogen. The OSHA Bloodborne Pathogens Standard's definition of exposure is a specific eye, mouth, other mucous membranes, non-intact skin, or parenteral contact with blood or other potentially infectious materials that results from the performance of an employee's duties (OSHA, 2016).
The triage nurse draws a blood sample from the nurse, and the sample is sent to the laboratory to be tested for HCV antibodies and HIV antigen, and HIV antibodies. The nurse has completed the HBV vaccination series, and his post-vaccination HBV surface antibody level was ≥ 10 IU/mL, so he is protected against HBV infection. A sample of the patient's blood is sent to the laboratory. It will be tested for HBV antigen and HBV antibodies, HCV antigen and HCV antibodies, and HIV antigen and HIV antibodies. A rapid-result HIV test will be done for the employee and the source, and the results of these tests should be available within about 20 minutes. Post-exposure prophylaxis (PEP) for HIV should be started within several hours after exposure, so the nurse and the provider decide to wait for the test results and not begin PEP. The provider explains to the nurse that there is no effective prophylaxis for HCV.
The nurse and the patient are HIV-negative, but the patient has a measurable level of HCV RNA; the nurse's HCV tests are negative. The patient will be referred to a clinician for evaluation. The nurse makes an appointment to have an HCV RNA test done in three to six weeks. This test is negative, and a follow-up HCV antibody test four to six months after the exposure is done. This test is negative, and no further testing is needed.
Hepatitis B, HCV, and HIV are transmitted by contact with blood or infected body fluids; the contact can occur by a percutaneous injury, e.g., a needlestick or a sharps injury, by contact with a mucous membrane, or by exposure to non-intact skin (CDC, 2020a; Fauci et al., 2018; Shenoy & Weber, 2021; Weber, 2020).
The Occupational Safety and Health Organization (OSHA) definition of blood is blood, human blood components, and other products made from human blood (OSHA, 2016). OSHA considers these body fluids potentially infectious:
Also, OSHA states that bodily fluids visibly stained with blood should be considered potentially infectious. Body fluids should be considered potentially infectious when it is difficult or impossible to differentiate between them (OSHA, 2016).
Occupational exposures to bloodborne pathogens are common. Each year, it has been estimated that 600,000 to 800,000 healthcare workers in the United States get a needlestick or a sharps injury (Fauci et al., 2018). Mengitsu et al. (2021) did a systematic review and meta-analysis of the published literature. The authors found that worldwide, the career and the previous year prevalence of needlestick injuries in healthcare workers was 56.2% and 32.4%.
Transmission of and subsequent infection with HBV after occupational exposure to the virus is standard; transmission of and subsequent infection with HCV and HIV is not. The risk of developing serologic evidence of HBV infection after occupational, percutaneous exposure is 37% to 62% and the risk of developing clinical hepatitis is 22%-31% (Shenoy $ Weber, 2021: Weber, 2020). A splash contact can transmit hepatitis B to a mucous membrane (Schillie et al., 2018). There are no reported incidents of transmission of HBV through intact skin (Chilaka et al., 2020).
In the United States, there have been 58 documented HIV infections contracted by healthcare workers, 150 possible cases, and (Fauci et al., 2018). The risk of HIV transmission from a needlestick/sharps injury is estimated at 0.23%, and from mucous membrane exposure, 0.09% (Fauci et al., 2018). The risk of HIV transmission after mucous membrane exposure is estimated at 0.09% (Fauci et al., 2018; Shenoy & Weber,2021). Transmission of HIV through non-intact skin has occurred, but the level of risk for this type of exposure is unknown (Fauci et al., 2018). There are no reported incidents of transmission of HIV through intact skin (Chilaka et al., 2020).
no reported cases since 1999The risk of transmission of and infection with HBV, HCV, or HIV to healthcare workers depends on the HBV vaccination status of the employee, how common these viruses are in the patient population, the viral load of the source, and how the exposure occurred (Weber, 2020; Zachary, 2019). Transmission and infection are more likely to occur if the patient has a high viral load; if the needlestick was from a hollow bore needle; if the needle had been in an artery or a vein; if the injury is deep; there was visible blood on the needle/instrument, or if a large volume of blood was involved (Weber, 2020; Zachary, 2019).
Situations that increase the risk of a needlestick injury include, but are not limited to:
Avoiding occupational blood exposures is the primary way to prevent the transmission of bloodborne pathogens in healthcare settings. The Occupational Safety and Health Administration Standard 1910.1030, Bloodborne Pathogens, mandates that in a workplace in which employees could be exposed to bloodborne pathogens, the employer must develop a written exposure control plan designed to eliminate or minimize employee exposure (OSHA, 2016). An exposure control plan has many parts; the ones that directly concern healthcare professionals include:
The recommendations in Standard 1910.1030 differ slightly from infection control advice from the CDC and other authoritative sources. These differences are not important; the essential content and the basic recommendations are the same.
Standard 1910.1030 states that employers must offer hepatitis B vaccination to at-risk employees at no cost (OSHA, 2016). Employees are exempt if they are vaccinated, antibody testing shows that they are immune, or the use of the vaccine is contraindicated (OSHA, 2016; OSHA, 2011).
Engineering controls are devices, equipment, and procedures that help reduce the risk of exposure to bloodborne pathogens (OSHA, 2016). Examples of engineering controls mentioned in Standard 1910.1030 are disposal containers for needles and sharps, needleless systems for self-sheathing needles, and sharps with built-in injury protection (OSHA, 2016). Example: Sharps with engineered sharps injury protections means a non-needle sharp or a needle device used for withdrawing body fluids, accessing a vein or artery, or administering medications or other fluids, with a built-in safety feature or mechanism that effectively reduces the risk of an exposure incident (OSHA, 2016).
The OSHA Bloodborne Pathogens standard recommends using Universal Precautions. Universal Precautions were the original CDC infection guidelines for preventing exposure to and transmission of bloodborne pathogens. Standard Precautions, which were developed later, added to and expanded Universal Precautions. Standard Precautions are universally used by healthcare facilities today.
Standard Precautions include:
Hand hygiene has been identified as the most important method of preventing and reducing the transmission of pathogens from one patient to another and from an infected site on a patient to a clean site on the same patient (Anderson, 2020; Gammon & Hunt, 2020). Unfortunately, compliance with hand hygiene by healthcare workers is often sub-optimal (Hoffman et al., 2020). The OSHA Bloodborne Pathogens standard states that employers are required to provide handwashing equipment and facilities (OSHA, 2016), and employees are required to know when and how to wash their hands (OSHA, 2016).
Hand hygiene can be done with an alcohol-based hand sanitizer or soap and water (CDC, 2021b). Alcohol-based hand sanitizers are preferred because they are:
An alcohol-based hand sanitizer should be used in these situations:
To use an alcohol-based hand sanitizer, put the recommended amount on your hands. Rub your hands together, covering every part of your hands and fingers until they are dry; this usually requires about 20 seconds (CDC, 2021b).
Soap and water should be used in these situations:
To wash your hands with soap and water, wet your hands. Apply the recommended amount of soap and then rub your hands together, covering every part of your hands and fingers; do this for 15 to 20 seconds. Rinse your hands and fingers, use a paper towel to dry them, use the towel to turn the faucet handle to the off position, and discard the towel. The recommended time of 15 to 20 seconds is a guideline (CDC, 2019b). The CDC recommends that the length of time is less important than making sure you clean all areas of your hands (CDC, 2019b).
Note: The World Health Organization (WHO) Save Lives: Clean Your Hands program has a simple way to remember when to use hand hygiene: My Five Moments for Hand Hygiene:
Respiratory hygiene and cough etiquette were added to Standard Precautions in response to the severe acute respiratory syndrome (SARS) outbreak in 2003 (Siegel et al., 2019). The virus that caused the 2003 SARS outbreak and the COVID-19 virus cause respiratory infections. These viruses are transmitted by infected droplets that are spread when someone coughs, sneezes, talks, and airborne transmission to a lesser degree (McIntosh, 2020). Respiratory hygiene and cough etiquette can help prevent the transmission of viruses that cause respiratory infections, and this infection control technique includes the following measures:
PPE is equipment that is designed to prevent the transmission of pathogens by direct contact. It includes eye shields, face shields, foot or shoe covers, gloves, goggles, gowns, head covers, and respirators. Employers are required to provide employees with the PPE they need to protect themselves and provide training on how to use PPE (OSHA, 2016), and employees are expected to know how and when to use PPE (CDC, 2020b).
Choose the PPE to use by assessing a situation and determining what you may be exposed to and how you may be exposed. Healthcare facilities must train employees on the proper use of PPE, but healthcare professionals must use their judgment to decide what PPE they need to use. Example: The OSHA Bloodborne Pathogens Standard states:
“Masks in combination with eye protection devices, such as goggles or glasses with solid side shields, or chin-length face shields, shall be worn whenever splashes, spray, spatter, or droplets of blood or other potentially infectious materials may be generated and eye, nose, or mouth contamination can be reasonably anticipated (OSHA, 2016)."
PPE must be donned and removed correctly to protect patients and healthcare workers. Use these steps for donning PPE:
Use these steps for removing PPE:
Note: Handwashing and the proper use of gloves are effective infection control techniques. However, healthcare workers often do not follow handwashing recommendations (Moore et al., 2021), and gloves can tear and be penetrated (Zhang et al., 2021). The CDC's stance on the use of gloves and handwashing is: The use of gloves does not eliminate the need for hand hygiene. Likewise, the use of hand hygiene does not eliminate the need for gloves. (CDC, 2002). Gloves should be changed when they are damaged, when you move from a contaminated body site to a clean body site, and when the gloves are bloody, dirty, or contaminated by body fluids (CDC, 2019b).
Safe injection practices, also called injection safety, are practices and techniques that:
The CDC states, "A safe injection does not harm the recipient, does not expose the provider to any avoidable risks, and does not result in waste that is dangerous for the community (e.g., through inappropriate disposal of injection equipment)" (CDC, 2019c).
Safe injection practices were added to Standard Precautions after four large outbreaks of HBV and HCV occurred in patients who had been treated in ambulatory care centers (e.g. an endoscopy clinic, a hematology/oncology clinic, a pain clinic, and a private physician's office) (Siegel et al., 2019). The outbreaks were caused by failing to use the following proper infection control techniques:
The essential elements of Safe Injection Practices are listed below:
The OSHA Bloodborne Pathogens Standard recommendations for the safe use of needles and sharps are listed below:
One serious bloodborne infection can cost more than a million dollars for medications, follow-up laboratory testing, clinical evaluation, lost wages, and disability payments. The human costs after exposure are immeasurable. Employees may experience adjustment disorders, anxiety, crying spells, depression, panic attacks, post-traumatic stress disorder, and family, occupational, and sexual trouble dysfunction (Cooke & Stephens, 2017; Green & Griffiths, 2013).
The OSHA Bloodborne Pathogens Standard's definition of exposure is a specific eye, mouth, other mucous membranes, non-intact skin, or parenteral contact with blood or other potentially infectious materials that results from the performance of an employee's duties.
Employees should report exposure to blood, exposure to body fluids, a needlestick injury, or a sharps injury immediately or as soon as possible (CDC, 2016c). The importance of immediately reporting an exposure cannot be overstated; if the healthcare worker was exposed to HIV, post-exposure prophylaxis should be started within hours after the exposure.
After a needlestick or a sharps injury, immediately wash the wound with soap and water (Weber, 2020); if there has been an ocular or mucous membrane exposure, flush the area with water (Weber, 2020). An antiseptic can be applied to the area of a needlestick or a sharps injury, but do not inject anything into the area, do not apply bleach, and do not waste time squeezing the area of the wound to try and express blood or fluid from the wound (Weber, 2020).
The treatment for exposure to HBV or possible exposure to HBV focuses on the HBV status of the source and the employee's immune status (Schillie et al., 2018; Weber, 2020). There are multiple possible scenarios.
The employee has been infected with HBV; no treatment is needed, even if the source has a positive hepatitis B surface antigen (HBsAg) test (Schillie et al., 2018; Weber, 2020).
If the employee has received HBV vaccination and they are a responder (Schillie et al., 2018; Weber, 2020), i.e., the HBV surface antibody level is ≥ 10 IU/mL, no treatment is needed, even if the source has a positive HBsAg test (Schillie et al., 2028; Weber, 2020).
If the employee has received HBV vaccination but they are considered to be a non-responder, i.e., the HBV surface antibody is < 10 IU/mL, and the source has a positive HBsAg test, or if the HBV status of the source cannot be determined, the employee should be given one dose of hepatitis B immunoglobulin (HBIG) and one dose of HBV B vaccine (Schillie et al., 2018; Weber, 2020). These should be given simultaneously at different sites (Schillie et al., 2018; Weber, 2020). The HBV vaccine series should be completed, and one to two months after the last dose, the employee's hepatitis B surface antibody level should be measured (Schillie et al., 2018; Weber, 2020). These employees should also have a hepatitis B surface antibody level measured and tested for HBsAg presence six months after the exposure (Schillie et al., 2018).
If the employee is a non-responder and the source's HBsAg test is negative, the employee should be given one dose of HBV vaccine. A hepatitis B surface antibody level should be measured one month later (Schillie et al., 2018; Weber, 2020). If the hepatitis B surface antibody level is < 10 IU/mL, two more doses of HBV vaccine should be given, and a hepatitis B surface antibody level should be measured one to two months later (Schillie et al., 2018; Weber, 2020).
For employees who have not received HBV vaccination or employees who have not completed their vaccination series, the HBsAg status of the source should be determined, but the employee's hepatitis B surface antibody level should not be measured if she has not completed the vaccination series (Schillie et al., 2018; Weber, 2020). In these cases, a hepatitis B surface antibody level > 10 IU/mL does not indicate immunity (Schillie et al., 2018; Weber, 2020).
If the source is HBsAg positive, the employee should simultaneously get one dose of HBIG and one dose of HBV vaccine at different sites (Schillie et al., 2018; Weber 2020). The hepatitis B vaccination series should be completed, and one to two months after the last dose, a hepatitis B surface antibody level should be measured (Schillie et al., 2018; Weber, 2020). Schillie et al. wrote that because anti-HBs testing of HCP who received HBIG should be performed after anti-HBs from HBIG is no longer detectable (6 months after administration), it might be necessary to defer anti-HBs testing for a period longer than 1–2 months after the last vaccine dose in these situations. After the vaccination series has been completed, an employee with a hepatitis B surface antibody level ≥ of 10 IU/mL is immune, and no further testing is needed (Schillie et al., 2018). If the employee's level is < 10 IU/mL, they should be revaccinated, and a hepatitis B surface antibody level should be measured one to two months after the last dose (Schillie et al., 2018).
If the source is HBsAg negative, the HBV vaccination series should be completed, and one to two months after the last dose, a hepatitis B surface antibody level should be measured (Schillie et al., 2018; Weber, 2020). After the vaccination series has been completed, an employee with a hepatitis B surface antibody level ≥ 10 IU/mL is immune, and no further testing is needed (Schillie et al., 2018). If the employee's level is < 10 IU/mL, they should be revaccinated, and a hepatitis B surface antibody level should be measured one to two months after the last dose (Schillie et al., 2018).
An employee exposed to an HBsAg positive source or a source whose HBsAg status is unknown should not donate blood, organs, plasma, semen, or tissues during the six-month follow-up period (Schille et al., 2018; Weber,2020). Sexual practices do not need to be changed, becoming pregnant is not contraindicated, and breastfeeding can be continued (Schillie et al., 2018). Also, the employee can continue their normal work responsibilities (Schillie et al., 2018).
There is no effective prophylactic treatment for acute exposure to HCV (Moorman et al., 2020; Weber, 2020). Direct-acting antivirals effectively treat chronic HCV infection, but there is no evidence that they are effective prophylaxis (Weber, 2020). The source should be tested, preferably within 48 hours after the exposure, preferably using a nucleic acid test that detects HCV RNA (Moorman et al., 2020). The alternative is to test the source for the presence of HCV antibodies and then test for HCV RNA if the antibody test is positive (Moorman et al., 2020).
Suppose the source has or is suspected of having had recent behavioral risk factors for HCV exposure like IV drug use. In that case, HCV RNA measurement should be done (Moorman) as someone who was recently infected may not have HCV antibodies yet, but they will have HCV RNA (Weber, 2020). In either case, if the source does not have HCV RNA, the exposed employee does not need to be tested (Moorman et al., 2020). If the source has HCV RNA or HCV antibodies, they should be referred to a clinician for evaluation (Moorman et al., 2020).
The employee should be tested for HCV antibodies, and if the HCV antibody test is positive, a test for HCV RNA should be done as soon as possible and preferably within 48 hours (Moorman et al., 2020). If the source has HCV RNA or HCV antibodies or if the HCV status of the source is unknown or cannot be determined, the exposed employee should be tested for HCV antibodies and tested for HCV RNA within 48 hours of the exposure (Moorman et al., 2020; Weber, 2020).
If the employee's HCV antibody test is positive, but the HCV RNA is negative, the employee was previously infected but cleared the infection (Moorman et al., 2020). If the employee's HCV RNA test is positive, the employee was previously exposed and had a preexisting HCV infection, and they should be referred for evaluation (Weber, 2020).
A negative HCV RNA test would require that the exposed employee be re-tested for HCV RNA at three weeks to six weeks after the exposure, and if this test is positive, the employee has an HCV infection and should be referred for evaluation (Moorman et al., 2020; Weber, 2020). This test should also be done if the source had HCV antibodies and the source could not be tested for HCV RNA (Moorman et al., 2020).
If the second HCV RNA test done at three to six weeks post-exposure is negative, the employee should be re-tested four to six months after that point. If that HCV antibody test is negative, no further testing is needed (Moorman et al., 2020). If the HCV antibody test is positive, HCV RNA should be measured (Moorman et al., 2020). Further follow-up may be done if the employee is immunocompromised or has liver disease (Moorman, 2020).
The following tests should be done on the source: HIV antigen-HIV antibody test (Zachary, 2019), HCV antibody test or HCV RNA measurement (National Clinical Consultation Center, 2021), and HBsAg or a hepatitis panel consisting of HBsAg, hepatitis B antibody measurement, and hepatitis B core antibody test (National Clinical Consultation Center, 2021).
The following tests should be done on the employee: HIV antigen-HIV antibody test (Zachary, 2019), HCV antibody measurement with an HCV RNA test if the antibody test is positive (National Clinical Consultation Center, 2021), and HBV testing if needed depending on the employee's immunization status (National Clinical Consultation Center, 2021).
If the source's rapid HIV test is positive, this should be assumed to reflect the source's HIV status, and this information should be used to determine whether to begin post-exposure prophylaxis, aka PEP (National Clinical Consultation Center, 2021). A blood sample should be sent to confirm the rapid test results (National Clinical Consultation Center, 2021).
According to the National Clinical Consultation Center (2021), a negative rapid test should be considered a true negative. Investigation of whether a source might be in the "window period" is unnecessary for determining whether HIV PEP is indicated unless acute HIV, acute retroviral syndrome, is clinically suspected.
Post-exposure prophylaxis should be given:
Post-exposure prophylaxis should be started within one to two hours post-exposure, or sooner if possible (National Clinical Consultation Center, 2021; Zachary, 2019); do not wait for test results. Authoritative sources recommend that PEP should not be given ≥ 72 hours post-exposure (National Clinical Consultation Center; Zachary, 2019). However, this recommendation is based on drug testing in animals (National Clinical Consultation Center, 2021; Zachary, 2019). Zachary (2019) wrote:
"For most HCP, we do not initiate PEP if more than 72 hours have elapsed after the initial exposure . . . However, we do offer PEP after a longer interval to patients with a very high-risk exposure (e.g., sharps injuries from a needle that was in an artery or vein of an HIV-infected source patient)."
It is recommended that clinicians get a consultation if they intend to prescribe PEP > 72 hours post-exposure (National Clinical Consultation Center, 2021). For advice about using PEP for an employee exposed > 72 hours ago, call National Clinical Consultation Center at 1-888-448-4911.
If the source's rapid HIV test is negative, the employee can discontinue using the PEP (National Clinical Consultation Center, 2021).
The recommended PEP drug regimen is:
The risk of vertical transmission of HIV is high (National Clinical Consultation Center, 2021; Whiteley, 2019), breastfeeding can transmit HIV (National clinical Consultation Center, 2021), and the available information has shown that antiretroviral therapy during pregnancy is effective and safe (Hughes & Cu-Uvin, 2021; National Clinical Consultation Center, 2021; Rogers & Roberts, 2022). A pregnant employee who has been or may have been exposed to HIV should be evaluated and treated using the standard protocol that was previously described (National Clinical Consultation Center, 2021). Pregnant women prescribed antiretroviral therapy should be enrolled in the Antiretroviral Pregnancy Registry, www.apregistry.com (National Clinical Consultation Center, 2021). The Registry is intended to detect the teratogenic effects of antiretroviral drugs and pregnancy outcomes when used.
The recommended PEP for a pregnant employee after an HIV exposure is:
Breastfeeding is not contraindicated during antiretroviral therapy (National Clinical Consultation Center, 2021).
Post-Exposure Testing and Monitoring
The employee should be evaluated 72 hours after beginning PEP to determine if PEP should be continued and to assess for the presence of adverse effects of the drugs (Fauci, 2018; Zachary, 2019).
If PEP will be continued, the National Clinical Consultation Center recommends that the employee be tested for HIV at six weeks and three months after the exposure (National Clinical Consultation Center, 2021). The CDC and other authoritative sources recommend that the employee be tested four months after the exposure if a 4th generation antigen-antibody test is used or at other intervals if a test that only measures antibodies is used (National Clinical Consultation Center, 2021; Zachary, 2019).
If the employee develops an HCV infection and the source was infected with HCV and HIV, testing of the employee for HIV should be extended to 12 months post-exposure (National Clinical Consultation Center, 2021; Zachary, 2019).
Employees taking PEP should have baseline measurements of complete blood count (CBC) with a differential and tests of hepatic and renal function (Zachary, 2019). These should be repeated at two and fours weeks after PEP has begun (Zachary, 2019), and patients should also be monitored for hyperglycemia (Zachary, 2019).
The National Clinical Consultation Center provides telephone consultation by physicians and other healthcare professionals for occupational and non-occupational exposures to bloodborne pathogens. The service is available from 9 a.m. to 8 p.m., eastern time, Monday through Friday, and 11 a.m. to 8 p.m., Saturday, Sunday, and holidays. The Center's website has detailed instructions for treating exposure to a bloodborne pathogen if the exposure happens outside of its operating hours. 1-888-448-4911.
Healthcare workers are continually at risk for exposure to HBV, HCV, and HIV. Needlestick injuries and other exposures are common. Although the transmission of a bloodborne pathogen is uncommon to rare, the consequences can be costly and emotionally and psychologically devastating.
Fortunately, HBV vaccination, engineering and workplace controls, Standard Precautions, hand hygiene, respiratory hygiene and cough etiquette, the use of PPE, and safe injection practices, can significantly reduce the risk of exposure to and transmission of bloodborne pathogens. Also, post-exposure treatment can effectively reduce the risk of developing HBV or HIV infection from occupational exposure to these pathogens.
CEUFast, Inc. is committed to furthering diversity, equity, and inclusion (DEI). While reflecting on this course content, CEUFast, Inc. would like you to consider your individual perspective and question your own biases. Remember, implicit bias is a form of bias that impacts our practice as healthcare professionals. Implicit bias occurs when we have automatic prejudices, judgments, and/or a general attitude towards a person or a group of people based on associated stereotypes we have formed over time. These automatic thoughts occur without our conscious knowledge and without our intentional desire to discriminate. The concern with implicit bias is that this can impact our actions and decisions with our workplace leadership, colleagues, and even our patients. While it is our universal goal to treat everyone equally, our implicit biases can influence our interactions, assessments, communication, prioritization, and decision-making concerning patients, which can ultimately adversely impact health outcomes. It is important to keep this in mind in order to intentionally work to self-identify our own risk areas where our implicit biases might influence our behaviors. Together, we can cease perpetuating stereotypes and remind each other to remain mindful to help avoid reacting according to biases that are contrary to our conscious beliefs and values.